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This paper is an exploration of the characteristic polynomials of tridiagonal matrices. In
particular what are the coefficients for characteristic polynomial in a fully expanded form.
This paper was inspired by Matrix Analysis [5] which posed the problem of determining the
characteristic polynomial of a 5 by 5 all ones tridiagonal matrix. The followup was how this
procedure can be generalized.

1 All ones tridiagonal matrices

Let

Tn :=


1 1
1 1 1

. . . . . . . . .

1 1 1
1 1


be the n by n tridiagonal matrix of all 1s.

Question 1.1. What is the characteristic polynomial of Tn?

A good place to start is to work with some examples. In this effort, the coefficients for
the characteristic polynomials of Tn for n up to 15 in decreasing order are given below.
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n
0 1
1 1 -1
2 1 -2 0
3 1 -3 1 1
4 1 -4 3 2 -1
5 1 -5 6 2 -4 0
6 1 -6 10 0 -9 2 1
7 1 -7 15 -5 -15 9 3 -1
8 1 -8 21 -14 -20 24 3 -6 0
9 1 -9 28 -28 -21 49 -6 -18 3 1
10 1 -10 36 -48 -14 84 -35 -36 18 4 -1
11 1 -11 45 -75 6 126 -98 -50 60 4 -8 0
12 1 -12 55 -110 45 168 -210 -36 145 -20 -30 4 1
13 1 -13 66 -154 110 198 -384 48 279 -115 -70 30 5 -1
14 1 -14 78 -208 209 198 -627 264 441 -358 -100 120 5 -10 0
15 1 -15 91 -273 351 143 -935 693 561 -847 -21 335 -45 -45 5 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

This is an interesting pattern. Some immediate takeaways the first term is always 1, the
last term oscillates between 1,-1, and 0, and the second term is a negative growing term
matching n.

Using the standard method of finding the characteristic polynomial we get, as noted in
Matrix Analysis [5] property 0.9.10 of tridiagonal matrices,

det |λIn − Tn| = (λ− 1) det |λIn−1Tn−1| − det |λIn−2 − Tn−2| .

This leads to the recurrence relation

pTn(λ) = (λ− 1)pTn−1(λ)− pTn−2(λ) (1)

with initial conditions pT1(λ) = λ − 1 and pT2(λ) = (λ − 1)2 − 1. Evaluating some of these
yields

1 (λ− 1)
2 (λ− 1)2 − 1
3 (λ− 1)3 − 2(λ− 1)
4 (λ− 1)4 − 3(λ− 1)2 + 1
5 (λ− 1)5 − 4(λ− 1)3 + 3(λ− 1)
6 (λ− 1)6 − 5(λ− 1)4 + 6(λ− 1)2 − 1

From [2] Gullerud, Mbirika, and Post explore the set of tridiagonal matrices which are
all ones except the main diagonal is zeros. They come to a similar recurrence relation of the
form

fn(λ) = −λfn−1(λ)− fn−2(λ).
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and find that the entries follow pascal’s triangle on the diagonals instead of the rows.
In our case the third entry also follows pascal’s triangle. However the fourth and onward

do not. This is a step towards showing the characteristic polynomials follow a sum of binomial
coefficients.

1.1 Chebyshev polynomials

Looking at the OEIS, I found oeis.org/A049310. This closely matched the coefficients of the
factored recurrence relation. From there I found [1] where Artisevich, Bychkov, and Shabat
look into the relation between Chebyshev polynomials and Catalan numbers. They use this
relation on an application to tridiagonal matrices. For a good introduction to Chebyshev
polynomials see [7].

Chebyshev polynomials come in for kinds with the second two being derived from the
first two by the half angle trigonometric identities. In our case we care about Chebyshev
polynomials of the second kind, which from [7], are defined as

Definition 1.2. The Chebyshev polynomial Un(x) of the second kind is a polynomial of
degree n in x defined by

Un(x) =
sin(θn+ θ)

sin θ

when x = cos θ.

From this definition it can be shown that Un satisfies the recurrence relation

Un(x) = 2xUn−1(x)− Un−2(x)

with initial conditions U0(x) = 1 and U1(x) = 2x.
This is very similar to the recurrence relation from (1) and shows why, in the OEIS entry,

taking Un(x/2) matches exactly to our factored form. However neither Artisevich’s paper or
the book on Chebyshev polynomials had a good solution to this recurrence relation.

1.2 Catalan numbers and Generalized Fibonacci polynomials

Another similar looking OEIS entry for the coefficients of the factored terms was, oeis.org/A115139.
This is an interesting connection since it shows that the coefficients in this semi-factored form
are related to the Catalan numbers (or at least through the Catalan number’s generating
function).

One of the references to the OEIS entry was [3] which talked about generalized Fibonacci
polynomials. In the paper they were defined as follows

F0(x) = 0, F1(x) = 1, and Fn(x) = d(x)Fn−1(x) + g(x)Fn−2(x)

for n ≥ 2, where d(x) and g(x) are fixed non-zero polynomials in Z[x] satisfying gcd(d(x), g(x)) =
1. In the paper was the following Lemma, which was originally proven in [4] by Hoggatt and
Long,
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Lemma 1.3. If Fn(x) is a generalized Fibonacci polynomial of Fibonacci type, with n > 0,
then

Fn(x) =

bn−1
2
c∑

k=0

(
n− k − 1

k

)
d(x)n−2k−1g(x)k.

Now in our case we can add two extension characteristic polynomials

pT0(λ) = 1 and pT−1(λ) = 0.

These don’t really make sense from a matrix point of view since we can’t have 0 by 0 or −1
by −1 sized matrices, but this allows us to turn our recurrence relation into the form for it
to be a generalized Fibonacci polynomial. They also still give the correct initial conditions
from (1).

Lemma 1.4. The characteristic polynomial for Tn, in its recurrence relation factored form,
is given by

pTn(λ) =

bn/2c∑
k=0

(
n− k
k

)
(−1)k(λ− 1)n−2k.

Proof. Applying Lemma (1.3) to the recurrence relation

pT−1(λ) = 0, pT0(λ) = 1, and pTn(λ) = (λ− 1)pTn−1(λ)− pTn−2(λ).

We get that d(λ) = (λ− 1) and g(λ) = −1. Putting this together with the shift since we are
starting at −1 yields

pTn(λ) =

bn/2c∑
k=0

(
n− k
k

)
(−1)k(λ− 1)n−2k.

Question 1.5. Can the formula above be used to find the exact coefficients of a fully
expanded tridiagonal matrix?

To start on answering this question we can use the binomial theorem to expand the
(λ− 1)j this gives the following

pTn(λ) =

bn/2c∑
k=0

n−2k∑
j=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−jλj.

From there we can carefully swap the sums and bring out the λ giving

pTn(λ) =
n∑

j=0

λj
bn−j

2 c∑
k=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−j.
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Thus the coefficients of the characteristic polynomial Tn are of the form

bn−j
2 c∑

k=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−j.

Sadly I don’t see any way to get this in a more closed form. The binomial coefficients don’t
seem to combine or simplify in any meaningful way especially with the sign flipping every
term.

2 Generalization to constant diagonal tridiagonal ma-

trices

Lets now turn to tridiagonal matrices who have constant diagonal entries. We can define
this as

Tn(a, b, c) =


b c
a b c

. . . . . . . . .

a b c
a b


Again applying the standard method of finding the characteristic polynomial we get

det |λIn − Tn(a, b, c)| = b(λ− 1) det |λIn−1Tn−1(a, b, c)| − (ac) det |λIn−2 − Tn−2(a, b, c)| .

Which gives us the recurrence relation

pTn(a,b,c)(λ) = b(λ− 1)pTn−1(a,b,c)(λ)− (ac)pTn−2(a,b,c)(λ).

We can use the same generalized Fibonacci polynomial formula with d(λ) = b(λ−1) and
g(λ) = −ac to derive the formula

pTn(a,b,c)(λ) =

bn/2c∑
k=0

(
n− k
k

)
(−ac)kbn−2k(λ− 1)n−2k.

Once again we can expand this out with the binomial theorem and carefully swap the sums
to get

pTn(a,b,c)(λ) =

bn/2c∑
k=0

n−2k∑
j=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−j(ac)kbn−2kλj (2)

=
n∑

j=0

λj
bn−j

2 c∑
k=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−j(ac)kbn−2k. (3)
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Which gives that the coefficients of the characteristic polynomial for Tn(a, b, c) are

bn−j
2 c∑

k=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−j(ac)kbn−2k.

3 Concluding remarks

The coefficients for the characteristic polynomials of Tn and Tn(a, b, c) have two binomial
terms that flip signs. From [6] there may be an interesting ways to simplify this using Catalan
numbers.

The pattern for finding the determinant of a tridiagonal matrix may allow for (2) to be
extended to arbitrary tridiagonal matrices.

Conjecture 3.1. Let b ∈ Cn, a, c ∈ Cn−1, and define

Tn(a, b, c) =


b1 c1
a1 b2 c2

. . . . . . . . .

an−2 bn−1 cn−1
an−1 bn


as an arbitrary tridiagonal matrix. The characteristic polynomial, pTn(a,b,c)(λ), is given by

pTn(a,b,c)(λ) =
n∑

j=0

λj
bn−j

2 c∑
k=0

(
n− k
k

)(
n− 2k

j

)
(−1)n−k−j

(
k∏

`=1

a`c`

)(
n−2k∏
`=1

b`

)
.
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